9 research outputs found

    Community Consensus Guidelines to Support FAIR Data Standards in Clinical Research Studies in Primary Mitochondrial Disease

    Get PDF
    Primary mitochondrial diseases (PMD) are genetic disorders with extensive clinical and molecular heterogeneity where therapeutic development efforts have faced multiple challenges. Clinical trial design, outcome measure selection, lack of reliable biomarkers, and deficiencies in long-term natural history data sets remain substantial challenges in the increasingly active PMD therapeutic development space. Developing "FAIR" (findable, accessible, interoperable, reusable) data standards to make data sharable and building a more transparent community data sharing paradigm to access clinical research metadata are the first steps to address these challenges. This collaborative community effort describes the current landscape of PMD clinical research data resources available for sharing, obstacles, and opportunities, including ways to incentivize and encourage data sharing among diverse stakeholders. This work highlights the importance of, and challenges to, developing a unified system that enables clinical research structured data sharing and supports harmonized data deposition standards across clinical consortia and research groups. The goal of these efforts is to improve the efficiency and effectiveness of drug development and improve understanding of the natural history of PMD. This initiative aims to maximize the benefit for PMD patients, research, industry, and other stakeholders while acknowledging challenges related to differing needs and international policies on data privacy, security, management, and oversight

    The evolution of the mitochondrial disease diagnostic odyssey

    No full text
    Abstract Background Mitochondrial diseases often require multiple years and clinicians to diagnose. We lack knowledge of the stages of this diagnostic odyssey, and factors that affect it. Our goals are to report the results of the 2018 Odyssey2 (OD2) survey of patients with a medical diagnosis of mitochondrial disease; and to propose steps to reduce the odyssey going forward, and procedures to evaluate them. Methods Data are from the NIH-funded NAMDC-RDCRN-UMDF OD2 survey (N = 215). The main outcomes are Time from symptom Onset to mitochondrial disease Diagnosis (TOD) and Number of Doctors Seen during this diagnostic process (NDOCS). Results Expert recoding increased analyzable responses by 34% for final mitochondrial diagnosis and 39% for prior non-mitochondrial diagnosis. Only one of 122 patients who initially saw a primary care physician (PCP) received a mitochondrial diagnosis, compared to 26 of 86 (30%) who initially saw a specialist (p < 0.001). Mean TOD overall was 9.9 ± 13.0 years, and mean NDOCS 6.7 ± 5.2. Mitochondrial diagnosis brings extensive benefits through treatment changes and increased membership in and support of advocacy groups. Conclusions Because TOD is long and NDOCS high, there is great potential for shortening the mitochondrial odyssey. Although prompt patient contact with primary mitochondrial disease specialists, or early implementation of appropriate tests, may shorten the diagnostic odyssey, specific proposals for improvement require testing and confirmation with adequately complete, unbiased data across all its stages, and appropriate methods. Electronic Health Record (EHRs) may help by accessing diagnostic codes early, but their reliability and diagnostic utility have not been established for this group of diseases

    Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    No full text
    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The “Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium” is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1,300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial disease

    Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    No full text
    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (. https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases

    Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    No full text

    Nutritional interventions in primary mitochondrial disorders: Developing an evidence base

    No full text
    corecore